1	It can be seen in a search of the literature that studies in which the keyword		Deleted: is
2	vermicomposting is mentioned (Gorbunova et al., 2020; Jośko et al., 2020) mostly focus		Deleted: seen that the literature
	•		Deleted: where
3	on issues such as the effects of vermicomposting use, and its efficiency on "effectiveness"		Formatted: Font color: Red
4	with regard to' PERHAPS? different products. In this study an artificial intelligence-		
5 I	based system has been developed to separate cocoons used in vermicompost production		
6	from compost. Consequently, our study can be compared with studies that identify and		Deleted: For this reason
7	separate agricultural products with the help of computer vision techniques. We can divide		
8	the studies in this field into two groups - those based on image processing and those		
9	based on deep learning IS THIS WHAT YOU MEAN?. It is seen that topics such as		Deleted: subjects
10	identifying different agricultural products (Fu et al., 2018; Tian et al., 2019), classifying		
11	agricultural products (Ji et al., 2020; Knoll et al., 2019), and defects and disease detection		
12	(Afonso et al., 2019; Uğuz and Uysal, 2020) are investigated more I DO NOT		Formatted: Font color: Red
13	UNDERSTAND THIS. MORE THAN WHAT? in both groups.		
14	In this study since a real-time separating system has been developed, studies that detect		
15	or classify agricultural products in real time are also relevant to this study. In some studies		Deleted: can also be associated with
16	using real-time object detection and a conveyor assembly system, models based on image		
17	processing have been used. Wang et al. (2018), developed an image processing-based		
18	system for the classification of white mushrooms using the OpenCv library. With a		Deleted: with
•	· · · · · · · · · · · · · · · · · · ·	<	Deleted: the
19 	camera and conveyor belt system, they were able to classify 102 mushrooms per minute		
20	with 97% accuracy according to their 'in terms of' PERHAPS? size. Compared to		Formatted: Font color: Red
21	manual classification results they achieved a 38% improvement in terms of classification		Deleted: the
22	speed, and a 6.8% improvement in accuracy. Sofu et al. (2016) proposed a PLC FULL		Formatted: Font color: Red
23	TERM?		